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Three-point functions at finite temperature
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Abstract. We study 3-point functions at finite temperature in the closed time path formalism. We give
a general decomposition of the eight component tensor in terms of seven vertex functions. We derive a
spectral representation for these seven functions in terms of two independent real spectral functions. We
derive relationships between the seven functions and obtain a representation of the vertex tensor that
greatly simplifies calculations in real time.

1 Introduction

In this paper, we discuss the analytical structure of the
three-point function at finite temperature. We consider
bosonic fields and work in the real time formalism.
Throughout this paper we use the Keldysh or closed time
path (CTP) formalism [1–3]. The integration contour has
one branch running from negative infinity to positive infin-
ity, and a second branch running backwards from positive
infinity to negative infinity. We call the top branch of this
contour C1 and the bottom branch C2. The arguments of
the fields can take values on either branch of this contour.
This choice of contour then leads to a doubling of degrees
of freedom.

Historically, the real time formalism has been much
less popular than the imaginary time formalism because of
the mathematical difficulties associated with the doubling
of degrees of freedom. However, in some cases calculations
in the real time formalism are much simpler. In particular,
the real time formalism is extremely useful when work-
ing with ultra soft external energy scales. Examination of
the pole structure of the internal propagators allows one
to identify infinite sets of graphs that contribute to the
same order in perturbation theory. For example, in a the-
ory with an interaction of the form gφ3, the ladder graphs
contribute terms to the self energy of order g2LT 1+L/kL−1

when the number of loops L is larger than 1 [4,5]. When
the pole structure of all propagators is explicit it is easy
to extract the piece of each graph that dominates when
k ∼ g2T . In order to obtain complete results, all such
contributions must be resummed. This requires an effi-
cient and economic set of calculational tools for real-time
perturbation theory to which we wish to contribute with
the present paper.
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The analytic structure of the three-point vertex at fi-
nite temperature has been studied previously in several
publications, both in imaginary time [6,7] and real time
[8–12]. The real time formulation has the advantage that
it avoids the need for analytic continuation to real fre-
quencies which, for higher order n-point functions, can
easily become a source of confusion. Its disadvantage is
the occurrence of many different thermal components of
the n-point functions which results from the doubling of
degrees of freedom. The resulting proliferation of terms
in real-time calculations has contributed considerably to
the lack of popularity of the real-time formalism. In the
actual calculations one finds, however, that a large num-
ber of terms cancel in the end. We derive here a new de-
composition and spectral representation of the real-time
three-point vertex at finite temperature. Although it is
mathematically equivalent to those of [8–12]), it is shown
to lead to impressive simplifications in perturbative calcu-
lations by making the physical cancellations explicit on an
algebraic level in the first step of the calculation, thereby
dramatically reducing the number of terms which need to
be evaluated.

2 Single-particle propagator

To establish our notation and for later use we first consider
the single-particle propagator. In real time, the propagator
has 22 = 4 components, since each of the two fields can
take values on either branch of the contour. Thus, the
two-point function can be written as a 2× 2 matrix of the
form

D =
(

D11 D12
D21 D22

)
, (1)

where D11 is the propagator for fields moving along C1,
D12 is the propagator for fields moving from C1 to C2,
etc. The four components are given by [13]

D11(x − y) = −i〈T (φ(x)φ(y))〉 ,
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D12(x − y) = −i〈φ(y)φ(x)〉 ,

D21(x − y) = −i〈φ(x)φ(y)〉 ,

D22(x − y) = −i〈T̃ (φ(x)φ(y))〉 , (2)

where T is the usual time ordering operator, and T̃ is
the antichronological time ordering operator. These four
components satisfy

D11 − D12 − D21 + D22 = 0 (3)

as a consequence of the identity θ(x) + θ(−x) = 1.
It is more useful to write the propagator in terms of

the three functions

DR = D11 − D12 ,

DA = D11 − D21 ,

DF = D11 + D22 . (4)

DR and DA are the usual retarded and advanced propa-
gators satisfying

DR(x − y) − DA(x − y) = −i〈[φ(x), φ(y)]〉 , (5)

and DF is the symmetric combination

DF (x − y) = −i〈{φ(x), φ(y)}〉 . (6)

In Appendix A.1 we show that in momentum space these
propagators are related by the well-known fluctuation-dis-
sipation theorem [14]

DF (p) =
(
1 + 2n(p0)

) (
DR(p) − DA(p)

)

= −i
(
1 + 2n(p0)

)
ρ−(p) . (7)

where n(p0) is the thermal Bose-Einstein distribution

n(p0) =
1

eβp0 − 1
. (8)

ρ−(p) is the spectral density in terms of which all compo-
nents of the single-particle propagator can be expressed
via spectral integrals, for example

DR,A(p) =
∫ ∞

−∞

dω

2π

ρ−(ω,p)
p0 − ω ± iε

. (9)

Equations (3) and (4) are inverted by

D11 =
1
2
(DF + DA + DR) ,

D12 =
1
2
(DF + DA − DR) ,

D21 =
1
2
(DF − DA + DR) ,

D22 =
1
2
(DF − DA − DR) . (10)

These equations can be written in a more convenient no-
tation as [15]

2 D = DR

(
1
1

)(
1

−1

)
+ DA

(
1

−1

)(
1
1

)

+DF

(
1
1

)(
1
1

)
(11)

where the outer product of the column vectors is to be
taken. Using the relation (7) we further obtain [16]

D(p) = DR(p)
(

1
1

)(
1 + n(p0)

n(p0)

)

−DA(p)
(

n(p0)
1 + n(p0)

)(
1
1

)
. (12)

For later use we give the decomposition of the inverse
propagator:

D−1(p) =
1

DR(p)

(
1

−1

)(
1 + n(p0)
−n(p0)

)

+
1

DA(p)

( −n(p0)
1 + n(p0)

)(
1

−1

)
. (13)

These representations are very useful for doing calcula-
tions in real time.

Similar relations can be obtained for the polarization
tensor, although they are perturbatively less useful. The
polarization tensor is the 1PI two-point function and is
obtained by amputating the external legs from the single-
particle propagator. The Dyson equation gives

iD(p) = iD0(p) + iD0(p)
(−iΠ(p)

)
iD(p) . (14)

The analogues of (3) and (4) are

ΠR = Π11 + Π12 ,

ΠA = Π11 + Π21 ,

ΠF = Π11 + Π22 , (15)

and
Π11 + Π12 + Π21 + Π22 = 0 . (16)

The analogues of (11), (7) and (12) are

2 Π(p) = ΠR(p)
(

1
−1

)(
1
1

)
+ ΠA(p)

(
1
1

)(
1

−1

)

+ΠF (p)
(

1
−1

)(
1

−1

)
, (17)

ΠF (p) =
(
1 + 2n(p0)

) (
ΠR(p) − ΠA(p)

)
, (18)

Π(p) = ΠR(p)
(

1
−1

)(
1 + n(p0)
−n(p0)

)

+ΠA(p)
( −n(p0)

1 + n(p0)

)(
1

−1

)
. (19)

3 Three-point function

In the real time formalism, the three-point function has
23 = 8 components. We denote these by Γabc with {a, b, c
= 1, 2} where, for example,

Γ111(x, y, z) = 〈T (φ(x)φ(y)φ(z))〉 ,

Γ112(x, y, z) = 〈φ(z) T (φ(x)φ(y))〉 , (20)
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etc. The full set of vertex functions can be found in [15,
13]. Only seven of these eight components are independent
because of the identity

2∑
a,b,c=1

(−1)a+b+c−3Γabc = 0 (21)

which follows in the same way as (3) from θ(x)+θ(−x) =
1. The seven combinations that we use are defined as [15]

ΓR(x, y, z) = Γ111 − Γ112 − Γ211 + Γ212 ,

ΓRi(x, y, z) = Γ111 − Γ112 − Γ121 + Γ122 ,

ΓRo(x, y, z) = Γ111 − Γ121 − Γ211 + Γ221 ,

ΓF (x, y, z) = Γ111 − Γ121 + Γ212 − Γ222 ,

ΓFi(x, y, z) = Γ111 + Γ122 − Γ211 − Γ222 ,

ΓFo(x, y, z) = Γ111 − Γ112 + Γ221 − Γ222 ,

ΓE(x, y, z) = Γ111 + Γ122 + Γ212 + Γ221 . (22)

Clearly, the set (22) contains the same information as
(20) and (21). It merely defines a change of basis to a
different set of independent functions, just as (4) defines
a change of independent functions for the single-particle
propagator.

In coordinate space we always label the first leg of the
three-point function by x and call it the “incoming leg
(i)”, the third leg we label by z and call it the “outgoing
leg (o)”, and the second (middle) leg we label by y. Using
(20) we can rewrite (22) to obtain expressions for the
vertices in terms of commutators of the fields. With the
obvious shorthands φ1 ≡ φ(x), φ2 ≡ φ(y), φ3 ≡ φ(z), and
θ12 ≡ θ(x0 − y0), etc., one thus finds that the first three
vertices in (22) are just the retarded vertex functions:

ΓR = θ23θ31〈[[φ2, φ3], φ1]〉 + θ21θ13〈[[φ2, φ1], φ3]〉 ,

ΓRi = θ12θ23〈[[φ1, φ2], φ3]〉 + θ13θ32〈[[φ1, φ3], φ2]〉 ,

ΓRo = θ32θ21〈[[φ3, φ2], φ1]〉 + θ31θ12〈[[φ3, φ1], φ2]〉 .

(23)

ΓRi is the vertex retarded with respect to x0, ΓRo is re-
tarded with respect to z0, and ΓR is retarded with respect
to y0. The four remaining vertices contain various sym-
metric combinations of the fields.

The inversion of (22) can be elegantly presented in
tensor notation in terms of the two-component column
vectors introduced [15] in the previous section:

4 Γ = ΓR

(
1

−1

)(
1
1

)(
1

−1

)
+ ΓRi

(
1
1

)(
1

−1

)(
1

−1

)

+ ΓRo

(
1

−1

)(
1

−1

)(
1
1

)
+ ΓF

(
1
1

)(
1

−1

)(
1
1

)

+ ΓFi

(
1

−1

)(
1
1

)(
1
1

)
+ ΓFo

(
1
1

)(
1
1

)(
1

−1

)

+ ΓE

(
1
1

)(
1
1

)(
1
1

)
. (24)

This decomposition of the thermal vertex tensor is analo-
gous to (11) for the propagator. Its simple structure re-
sults from our choice (22) for the basis functions. In the

following section we show that it is possible to further sim-
plify this decomposition by deriving relationships between
the vertex functions (in analogy to (7)). The usefulness
of these expressions for performing explicit calculations is
demonstrated in Sect. 4.

3.1 Spectral representation
of the three-point functions

In Appendix A.2 we show in detail that the seven three-
point functions (22) can be rewritten in terms of two inde-
pendent spectral densities. Starting from (23), the three-
point functions are constructed as products of theta func-
tions and expectation values of the form

〈φaφbφc〉 =
∑

l

〈l|e−βHφaφbφc|l〉 . (25)

We calculate these expectation values in the usual way, by
going to the Heisenberg representation and using transla-
tion invariance in the form of (A1), and inserting com-
plete sets of states between the operators. Because of the
cyclic property of the trace, there are only two indepen-
dent expectation values. This allows us to write all of the
three-point functions in terms of two spectral functions.
We find it useful to define

ρA = ρ1 + ρ3

ρB = ρ2 + ρ4 (26)

where

ρ1(p, k) = (2π)8
∑
lmn

Mnml(e−βEl − e−βEm)

×δ(p − 1
2k + pl − pn) δ(p + 1

2k + pl − pm) ,

ρ2(p, k) = (2π)8
∑
lmn

Mnml(e−βEn − e−βEm)

×δ(p − 1
2k + pl − pn) δ(p + 1

2k + pl − pm) ,

ρ3(p, k) = (2π)8
∑
lmn

Mnml(e−βEl − e−βEn)

×δ(p − 1
2k + pm − pl) δ(p + 1

2k + pn − pl) ,

ρ4(p, k) = (2π)8
∑
lmn

Mnml(e−βEm − e−βEn)

×δ(p − 1
2k + pm − pl) δ(p + 1

2k + pn − pl) ,

(27)

with Mnml = 〈l|φ(0)|n〉〈n|φ(0)|m〉〈m|φ(0)|l〉 = M∗
lmn.

The two independent spectral functions ρA and ρB are
real in coordinate space since

ρA,B(p, k) = ρ∗
A,B(−p, −k). (28)

Another way of verifying that there are only two indepen-
dent real spectral densities is as follows: all four spectral
functions ρi(p, k), i = 1, . . . , 4, in (27) can be expressed
in terms of a single complex function,

ρ(p, k) = (2π)8
∑
lmn

Mnmle
−βEl δ(p − 1

2k + pl − pn)

×δ(p + 1
2k + pl − pm) , (29)
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by expressing all energies in the Boltzmann factors in
terms of El, using the δ-functions, and appropriately rela-
belling the summation indices. So there is really only one
complex function (or, equivalently, two real functions) of
p and k which contain all the physical information on the
(non-perturbative) analytical structure of the vertex.

We now write down the spectral representation of the
vertex functions in momentum space, Γα(p1, p2, p3), where
p1, p2, p3 (with pi = (Ei,pi)) are the momenta associated
with x, y, z, respectively (i.e. the three momenta flowing
into the three legs of the vertex). Due to translation in-
variance p1 + p2 + p3 = 0, and we exploit this by writing
p1 = p − k/2, p2 = k, and p3 = −(p + k/2).

We use the following shorthand notation:

Γα ≡ Γα(p, k) ≡ Γα(p − k/2, k,−p − k/2)
= Γα(p1, p2, p3) , α = R, F, E, . . . ;

ρA,B ≡ ρA,B(ω1,p;ω2,k) ;

a±
j =

1
Ej − Ωj ± iε

, j = 1, 2, 3 ;

Ω1 = ω1 − 1
2ω2 , Ω2 = ω2 ,

Ω3 = −ω1 − 1
2ω2 , Ω1 + Ω2 + Ω3 = 0 ;

Ñi = 1 + 2n(Ωi) , i = 1, 2, 3 ;∫
=

∫ ∞

−∞

dω1

2π

dω2

2π
. (30)

Then the spectral integrals for the vertex functions are

ΓR =
∫ [

(ρB − ρA)a−
1 − ρAa−

3

]
a+
2 ,

ΓRi =
∫ [

ρAa−
3 + ρBa−

2

]
a+
1 ,

ΓRo =
∫ [

(ρA − ρB)a−
1 − ρBa−

2

]
a+
3 ,

ΓF =
∫ [

Ñ1(ρB − ρA)(a+
1 a−

2 + a−
1 a+

3 + a−
2 a+

3 )

−Ñ3ρA(a+
1 a−

2 + a+
1 a−

3 + a−
2 a+

3 )
]

,

ΓFi =
∫ [

Ñ3ρA(a−
1 a+

2 + a−
1 a+

3 + a+
2 a−

3 )

+Ñ2ρB(a−
1 a+

2 + a−
1 a+

3 + a−
2 a+

3 )
]

,

ΓFo =
∫ [

Ñ1(ρA − ρB)(a−
1 a+

2 + a+
1 a−

3 + a+
2 a−

3 )

−Ñ2ρB(a+
1 a−

2 + a+
1 a−

3 + a+
2 a−

3 )
]

,

ΓE =
∫ [(

Ñ1Ñ3(ρB − ρA) + Ñ2Ñ3ρB

)
(a+

1 + a+
2 )a−

3

−Ñ1(Ñ3ρA + Ñ2ρB)(a+
2 + a+

3 )a−
1

+
(
Ñ1Ñ2(ρA − ρB) + Ñ2Ñ3ρA

)
(a+

1 + a+
3 )a−

2

]
.

(31)

These are the real-time analogues of the spectral repre-
sentations for the vertex function given by Evans in the

imaginary time formalism (ITF) [6]. Explicit expressions
for the spectral densities in the “hard thermal loop ap-
proximation” were given in [7] for the ITF vertex; their
transcription into the real time formalism will be an in-
teresting subject for a separate publication.

3.2 Relationships between the three-point functions

From the spectral representation, we obtain relationships
between the three-point functions which allow us to elim-
inate the three ΓF ’s and ΓE in terms of the retarded ver-
tex functions and their complex conjugates. We use again
shorthands Ni = N(Ei) = 1 + 2n(Ei) = 1 + 2ni where
E1, E2, E3 are the energies flowing into the three legs of
the vertex. Using

Re a±
j =

1
Ej − Ωj

,

Im a±
j = ∓iπδ(Ej − Ωj), (32)

and doing some tedious algebra we obtain

ΓF = N1(Γ ∗
R − ΓRo) + N3(Γ ∗

R − ΓRi) ,

ΓFi = N2(Γ ∗
Ri − ΓRo) + N3(Γ ∗

Ri − ΓR) ,

ΓFo = N1(Γ ∗
Ro − ΓR) + N2(Γ ∗

Ro − ΓRi) ,

ΓE = Γ ∗
Ri + Γ ∗

R + Γ ∗
Ro + N2N3(ΓRi + Γ ∗

Ri)
+ N1N3(ΓR + Γ ∗

R) + N1N2(ΓRo + Γ ∗
Ro) , (33)

where we have used the identity

N1N2 + N2N3 + N3N1 = −1 . (34)

Substituting (33) into (24) we obtain the analogue of
(12):

Γ = ΓR

(
n1

1 + n1

)(
1
1

)(
n3

1 + n3

)

−1
2
Γ ∗

R(N1 + N3)
(

1
1

)(
n2

1 + n2

)(
1
1

)

+ ΓRi

(
1
1

)(
n2

1 + n2

)(
n3

1 + n3

)

−1
2
Γ ∗

Ri(N2 + N3)
(

n1

1 + n1

)(
1
1

)(
1
1

)

+ ΓRo

(
n1

1 + n1

)(
n2

1 + n2

)(
1
1

)

−1
2
Γ ∗

Ro(N1 + N2)
(

1
1

)(
1
1

)(
n3

1 + n3

)
. (35)

This decomposition, together with the spectral rep-
resentations given by the first three lines in (31) which
express the three (complex) retarded vertices in terms of
two (real) spectral densities, is the main result of this pa-
per. It is mathematically equivalent to, but structurally
simpler than the results obtained by Evans [8], Kobes [9],
Aurenche and Becherrawy [10], and van Eijck, Kobes, and
van Weert [11,12]. The focus of those papers was the com-
parison of the imaginary-time and real-time formalisms,
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k k

p+k/2

p-k/2

Fig. 1. The scalar self energy in φ3 theory. The thick lines
represent full propagators and the solid blob represents a full
three-point vertex

and transformations between various representations of
the real-time formulation. Relations were obtained be-
tween the individual components of the vertex tensor and
the retarded and advanced vertices. The basic procedure
in all cases was similar: One started with the observa-
tion that the propagator can be diagonalized by a simple
matrix transformation. This diagonalization procedure is
not unique, resulting in different formulations using dif-
ferent basis functions (retarded/advanced [10], F/F̄ [12],
etc., see [17] for a recent review). One then attempts to
write the vertex tensor in a similar way, as a simple core
function contracted with a similar matrix transformation
at each leg [8]. Unfortunately, none of the previously ob-
tained results is particularly simple.

The key to our derivation is the realization that the
transformations between the various (anti)symmetric ver-
tices (22) are much simpler than transformations involv-
ing the individual components of the vertex tensor Γabc.
In this sense, the (anti)symmetric combinations that we
use are more convenient than, e.g., the time-ordered ver-
tex Γ111. Our result (35), expressed in the column vector
notation of [16], is extremely simple to use in calculations,
as will be demonstrated in the next section.

4 Outline of a calculation with full vertices

As an example of the usefulness of these techniques, in par-
ticular the decomposition (35), we set up the calculation
of the polarization tensor in φ3 theory in six dimensions.
This renormalizable theory is interesting as a toy model
since the φ3 interaction is mathematically similar to the
three gluon interaction in QCD. The Lagrangian is given
by

L =
1
2
(∂µφ)2 − 1

2
m2φ2 − g

3!
φ3. (36)

In terms of full propagators and vertices the polarization
tensor is given by the 1-loop diagram shown in Fig. 1.

In order for the polarization tensor and vertex to sat-
isfy the coupled Schwinger-Dyson equations, one must use
one corrected vertex and one bare vertex. We follow the
notation of [16]. The bare vertex contributes a factor of
−igτ3, where τ3 is the third Pauli matrix. We obtain

Πab(k) = g

∫
d6p

(2π)6
Γ̃cad(p − k/2, k,−(p + k/2))

×Dbd(−(p + k/2)) τ3
bx Dxc(p − k/2) (37)

where Γ̃ indicates the full 1PI vertex. We rewrite this
equation in terms of the connected vertex Γ by using the

definition

Γ̃cad(p1, p2, p3) (38)

=
1
i3

D−1
cc′ (p1) D−1

aa′(p2) D−1
dd′(p3) Γc′a′d′(p1, p2, p3)

which gives

Πab(k) = ig D−1
aa′(k) τ3

bx

×
(∫

d6p

(2π)6
Γxa′b(p − k/2, k,−(p + k/2))

)
. (39)

We insert the decompositions (13) and (35) in terms of
outer products of 2-component column vectors and use the
rule [16] that for internal indices (a′, c′, d′, c, d, x) which
are to be summed over the corresponding two column vec-
tors in (13) and (35) must be contracted to a scalar:(

x1

x2

)
·
(

x3

x4

)
= x1x3 + x2x4 . (40)

The index b in (39) is not summed over; the rule [16] is
that, after multiplying the τ3-matrix into the vertex by
summation over the index x, the remaining two column
vectors with the index b are to be contracted to a new
column vector according to(

x1

x2

)(
x3

x4

)
=

(
x1x3

x2x4

)
. (41)

Since (35) contains 6 terms and (13) contains 2 terms,
one expects 12 separate terms in the polarization tensor
each of which is again a sum of two terms according to
(40). It is, however, known from practical experience that
many of these terms cancel. In our formulation this can-
cellation occurs at the very first step of the calculation
because many of the contractions (40) vanish identically,
e.g.(

1
1

)
·
(

1
−1

)
= 0 ,

(
1 + n

−n

)
·
(

n

1 + n

)
= 0 . (42)

Furthermore, when calculating, for example, the retarded
polarization operator, all terms vanish in which the col-
umn vector carrying the index b is given by

( 1
−1

)
.

One thus obtains directly the following simple expres-
sions:

ΠR(k) = Π11(k) + Π12(k)

= ig
1

DR(k)

∫
d6p

(2π)6
N1(Γ ∗

Ro − ΓR) ,

ΠA(k) = Π11(k) + Π21(k)

= ig
1

DA(k)

∫
d6p

(2π)6
N1(Γ ∗

R − ΓRo) = Π∗
R(k) ,

ΠF (k) = Π11(k) + Π22(k)

= ig

∫
d6p

(2π)6
N1N2

×
[

1
DR(k)

(Γ ∗
Ro − ΓR)

− 1
DA(k)

(Γ ∗
R − ΓRo)

]
. (43)
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The only additional input were the relations (16) and (18)
which result in the simple identities

∫
d6p

(2π)6
(ΓRi + ΓRo) = 0,

∫
d6p

(2π)6
(ΓR + Γ ∗

R) = 0. (44)

The above results express the components of the full
scalar self energy in terms of the full propagators and ver-
tices and are thus correct to all orders of perturbation
theory. Formally, the expressions in (43) and the identi-
ties (44) remain unchanged in D space-time dimensions
(with arbitrary D). The simple structure given in (43)
should be preserved in partially resummed approximation
schemes like e.g. the hard thermal loop approximation,
in order to remain consistent with the Schwinger-Dyson
equations.

5 Conclusions

We have given a simple decomposition of the eight com-
ponent real time vertex tensor in terms of seven vertex
functions and outer products of triplets of simple two-
component column vectors. We have shown that the seven
vertex functions can be obtained through a spectral rep-
resentation from two independent real spectral functions.
We have obtained a set of relationships between the seven
vertex functions which allows us to express all of them
through the three retarded vertex functions and their com-
plex conjugates. These expressions were used to derive an-
other vector decomposition of the vertex tensor in terms
of the retarded vertex functions and their complex con-
jugates. The advantage of this expression for performing
calculations is that it allows one to see immediately that,
after performing all of the contractions, many of the terms
give zero. As far as we can see, our formalism implements
all of the known cancellations between contributions from
different components of the propagator and vertex tensors
algebraically through the contraction rules for the column
vectors. These cancellations occur before any loop inte-
grals must be evaluated, at the very beginning of the cal-
culation. This greatly simplifies loop calculations in real-
time finite temperature field theory.

We note that work similar to that presented here was
recently done by Fauser and Henning for the Yukawa the-
ory [18].
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Appendix A: Lehmann spectral representations

A.1 Single-particle propagators

We give a short derivation of (7). We start from (5)
and (6) and evaluate the thermal expectation value in the
Heisenberg picture by inserting complete sets of energy
and momentum eigenstates. Exploiting translation invari-
ance in the form

φ(x) = eip·xφ(0)e−ip·x , (A1)

where p is the momentum (gradient) operator and φ(0)
the Schrödinger field operator, we get

〈[φ(x)φ(y)]±〉 = Tr
(
e−βH [φ(x)φ(y)]±

)
(A2)

=
∑
m,n

e−βEm |〈m|φ(0)|n〉|2

×
(
ei(pm−pn)·(x−y) ± ei(pm−pn)·(y−x)

)
,

where p0
m,n = Em,n. Fourier transforming with respect to

x − y one finds

ρ±(p) ≡
∫

d4(x − y)eip(x−y)〈[φ(x), φ(y)]±〉 (A3)

= (2π)4
∑
m,n

|φmn(0)|2 δ(p + pm − pn)
(
e−βEm ± e−βEn

)
.

Using the energy conserving δ-function we can write

e−βEm + e−βEn = (1 + 2n(p0))
(
e−βEm − e−βEn

)
. (A4)

From (A3), (A4), (5) and (6) we obtain

DF (p) = −iρ+(p) = −i(1 + 2n(p0))ρ−(p)
= (1 + 2n(p0))(DR(p) − DA(p))

in agreement with (7).
Alternatively, one can start from the KMS condition

[19]

〈A(x, x0)B(y, y0)〉 = 〈B(y, y0 − iβ)A(x, x0)〉
= 〈B(y, y0)A(x, x0 + iβ)〉 (A5)

and apply it to 〈φ(x)φ(y)±φ(y)φ(x)〉. In momentum space
this leads directly to

ρ+(p) = (1 + 2n(p0))ρ−(p) (A6)

where ρ± are the respective Fourier transforms, with Leh-
mann representations (A3).

A.2 Three point functions

In this section we show in more detail how to obtain
the spectral representation for the seven connected ver-
tex functions. We will show that the seven vertex func-
tions can be written in terms of two independent spectral
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functions. We define

a1 = φ1φ2φ3θ12θ23,

b1 = φ3φ1φ2θ12θ23,

c1 = φ3φ2φ1θ12θ23,

d1 = φ2φ1φ3θ12θ23. (A7)

We have similar definitions for other combinations of theta
functions. Using an obvious short hand notation we have

{a, b, c, d}2 = {φ1φ2φ3, φ2φ3φ1, φ3φ2φ1, φ1φ3φ2}θ32θ21,

{a, b, c, d}3 = {φ1φ2φ3, φ2φ3φ1, φ3φ2φ1, φ1φ3φ2}θ23θ31,

{a, b, c, d}4 = {φ1φ2φ3, φ3φ1φ2, φ3φ2φ1, φ2φ1φ3}θ21θ13,

{a, b, c, d}5 = {φ2φ3φ1, φ3φ1φ2, φ1φ3φ2, φ2φ1φ3}θ13θ32,

{a, b, c, d}6 = {φ2φ3φ1, φ3φ1φ2, φ1φ3φ2, φ2φ1φ3}θ31θ12.

(A8)

In terms of these definitions, the seven vertex functions
are

ΓR = −(a3 − b3 + c3 − d3) − (a4 − b4 + c4 − d4),
ΓRi = (a1 − b1 + c1 − d1) + (a5 − b5 + c5 − d5),
ΓRo = (a2 − b2 + c2 − d2) − (a6 − b6 + c6 − d6),
ΓF = (a1 + b1 − c1 − d1) − (a2 + b2 − c2 − d2)

−(a5 − b5 − c5 + d5) − (a6 − b6 − c6 + d6),
ΓFi = (b2 − a2 + c2 − d2) − (a3 − b3 − c3 + d3)

−(a4 + b4 − c4 − d4) + (a6 + b6 − c6 − d6),
ΓFo = (a1 − b1 − c1 + d1) + (a3 + b3 − c3 − d3)

+(a4 − b4 − c4 + d4) − (a5 + b5 − c5 − d5),
ΓE = (a1 + b1 + c1 + d1) + (a2 + b2 + c2 + d2)

+(a3 + b3 + c3 + d3) + (a4 + b4 + c4 + d4)
+(a5 + b5 + c5 + d5) + (a6 + b6 + c6 + d6).

(A9)

We calculate the expectation values of the form (25) by
using (A1), inserting complete sets of states between the
operators and using the cyclic property of the trace. We
obtain the four spectral functions (27).

Using the notation of (30), the 24 functions (A7)
and (A8) can be written in terms of the four spectral func-
tions (27) as


(a1 − b1)
(a1 + b1)
(c1 − d1)

−(c1 + d1)


 =

∫ ∞

−∞

dω1

2π

dω2

2π
a+
1 a−

3




ρ1
−Ñ3ρ1

ρ3
−Ñ3ρ3


 ,




(a2 − b2)
(a2 + b2)
(c2 − d2)

−(c2 + d2)


 =

∫ ∞

−∞

dω1

2π

dω2

2π
a−
1 a+

3




ρ1 − ρ2
Ñ1(ρ1 − ρ2)

ρ3 − ρ4
Ñ1(ρ3 − ρ4)


 ,




(a3 − b3)
(a3 + b3)
(c3 − d3)

−(c3 + d3)


 =

∫ ∞

−∞

dω1

2π

dω2

2π
a−
1 a+

2




ρ1 − ρ2
Ñ1(ρ1 − ρ2)

ρ3 − ρ4
Ñ1(ρ3 − ρ4)


 ,




(a4 − b4)
(a4 + b4)
(c4 − d4)

−(c4 + d4)


 =

∫ ∞

−∞

dω1

2π

dω2

2π
a+
2 a−

3




ρ1
−Ñ3ρ1

ρ3
−Ñ3ρ3


 ,




(a5 − b5)
(a5 + b5)
(c5 − d5)

−(c5 + d5)


 =

∫ ∞

−∞

dω1

2π

dω2

2π
a+
1 a−

2




ρ2
−Ñ2ρ2

ρ4
−Ñ2ρ4


 ,




(a6 − b6)
(a6 + b6)
(c6 − d6)

−(c6 + d6)


 =

∫ ∞

−∞

dω1

2π

dω2

2π
a−
2 a+

3




ρ2
−Ñ2ρ2

ρ4
−Ñ2ρ4


 . (A10)

Not all of the spectral functions (27) are independent.
We can define the two independent combinations (26)
and express all results in terms of ρA and ρB by using the
relations

ρ1 − ρ3 = Ñ1(ρA − ρB) − Ñ2ρB ,

ρ2 − ρ4 = Ñ1(ρA − ρB) + Ñ3ρA. (A11)

Using (A9), (A10) and (A11) we obtain (31) for the spec-
tral representation of the vertex functions.
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